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Abstract. We study the coupling of solitary solutions of a magnetic Hamiltonian with strong
easy-plane anisotropy to longitudinal phonon excitations of the surrounding medium. The
spectral density of the coupling describing frequency-dependent damping is calculated. The spin-
correlation functions and the partition function of the dissipative magnetic system are computed.

1. Introduction

In the past, several attempts have been made to introduce dissipation into magnetic systems
described by the Heisenberg Hamiltonian and its ‘relatives’. Among these are two very
important subjects. The first is the sine—Gordon system, of which a good overview has
been given by Bishoget al [1], and the second is the field of single-domain particles
[2]. Most of the results concerned with these topics, including environmental effects, are
collected together in a review by Starapal [3]. The present paper is concerned with the
dissipative sine—Gordon system. The influence of dissipation has been discussed previously
within the problem of single-domain particles.

Garg and Kim [4] assumed that the magnetization of a single-domain particle is
coupled to a bath of phonons via the magnetoelastic tensor. In what follows, we will
provide a generalization of their approach to the sine—Gordon field problem. A more
phenomenological approach was followed by Lessl [5], who described the dissipative
motion of the azimuthal anglé of the total magnetization via a bilinear coupling ®fto
the phonon coordinate.

In the sine—Gordon problem also, several dissipative models were established. In some
of the studies [6], a phenomenological system-plus-reservoir model [7] with a bilinear
coupling in the sine-Gordon fiel@(x, r) and in the environmental coordinates has
been studied. Einggi et al [8] supplemented the classical equation of motion with a
phenomenological damping termn®. The sameansatzwas used by McLaughlin and
Overman [9], who studied the thermal decay of breather solutions of the sine—Gordon
equation. A slightly different damping termy® — 8®”, was used by Salernet al
[10]. Clearly, in order to justify the phenomenological approaches microscopically, one
has to investigate the coupling of the magnetic degrees of freedom to the elementary
excitations of the surrounding medium. Wada and co-workers [11] examined the nonlinear
interaction between solitary excitations and linear oscillating modes of the sine—Gordon
equation, and, as a result of the coupling, they found diffusive motion of the former. Quite
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similarly, Rostiashvili and Schilling [12] showed that the coupling of domain walls to
spatial fluctuations of the magnetization leads to an effective kink—kink interaction. Here
we investigate the coupling of the sine—Gordon field to the surrounding lattice vibrations.

In section 2 we introduce the Lagrangian of the sine—Gordon system with the coupling
to a bath of phonons. In section 3, the phonons are eliminated from the description, and
the dynamics of the sine—Gordon fiedelis reduced to that of a collective coordinate. The
partition function and the spin-correlation functions are calculated using the path-integral
formulation. The spectral density of the coupling is studied in some detail in section 4.
Before summarizing our work in section 6, we discuss in section 5 results for the change
of the partition function and spin-correlation functions under the influence of the phonon
coupling.

2. System-plus-reservoir models

The Lagrangian of an anisotropic magnetic system interacting with a thermal reservoir of
phonons may be written as

L=Ls+ Lyy+ Lins + Lcr 1)

where L, describes the magnetic systefy,, the thermal bath of phonons, aig,; is the
interaction between the spins and the phonons. Under the assumption that any one phonon
degree of freedom is only weakly perturbed, the interaction may be chosen to be linear
in the phonon variables. Howevek,,, does not need to be linear in the magnetization.
The last part of the Lagrangian is a counter-term which has been included to compensate
potential renormalization effects due to the coupling [7].

The Lagrangian of the unperturbed one-dimensional spin system (directed along the
z-axis) can be taken as the Lagrangian of the sine—Gordon problem which is deduced in
the case of strong easy-plane anisotropy [13] from the continuum limit of the ferromagnetic
Heisenberg Hamiltonian:

Hy=—Y 75 -5 +AY ()%~ gusBY S @
(i) i i

Here J is the exchange integradi is the anisotropy energyA(> 0), andB is an externally
applied magnetic field directed along theaxis. The sumzw) runs over pairs of nearest
neighbours only. To perform the continuum limit, it is convenient to introduce a basis
of coherent spin statel§2), satisfying€2 - S‘|Q) = S|Q), whereS is the spin eigenvalue
and Q2 = (sinf cosd, sind sin®, cos) is a vector on the unit sphere associated with the
spin direction. The partition function of the spin system may be written as a path integral
over the spin configuration®(z, ). In the limit of strong anisotropy, the path integral is
dominated by the stationary solutiéz, t) = 7/2. Within the Gaussian approximation
for the fluctuations about these paths, the integration évean easily be performed. This
procedure results in an effective Euclidean Lagrangian depending only on the &angle
between the spin and theaxis. In the limit of vanishing lattice spacing, the action takes
the continuous form

1., 100\ of

Ls[®(z, 7)] = Eoga f d ! o2+ (°20) + DPa—cosan! @3
2c? 2\ 0z c?

where ¢ = (2a2JAS»)Y? and wy = (2gupBS)Y? are the characteristic velocity and

frequency of the sine—Gordon problem, respectively. The energy SgateJ S? is chosen

in accordance with the Heisenberg model, anid the lattice spacing along theaxis.
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The phonon part of the Lagrangian describing a continuous set of 1D phonons
propagating along the chain reads

_ oo, ¥f (80)
Lpn[Un(z, )] —pReSZ\:/‘dZ {ZU* T2\ %z X

wherepg, is the mass density of the crystal, abigl(z, ) is theA- (= x, y, z-) component
of the phonon fieldJ (z, 7).

We introduce the interaction between the magnetic system described by the Heisenberg
Hamiltonian (2) and lattice vibrations (4) by allowing the exchange integral vary with
the displacement of the relative position of nearest-neighbour sites carrying the spins. Since
the variation might be different for different componentsSf(because of the anisotropy
of the underlying solid), the exchange integrahas to be regarded as a tensor:
aJu

dx} | Ri=R
" "R=R?

J = Ju(Ri — Ry) = J 8, + (u} — uf) 5)

whereu} = x! — 06, is the displacement ath spin from the equilibrium position. In the
continuum limit, this will be replaced by the phonon fidlti(z, t) according to

U, (z, .

D) Stsy (6)

(i =) S!S) A T (@ = )8 SIS + = DI,

where we have introduced the magnetoelastic ted8dr= a(9/9x*)J,, (a).

In the case of an exchange interaction depending only on the dist®ice R;|, the
quantity 3J,, (| R|)/dx* is different from zero only forA = z, which means that only
longitudinal phonons are coupled to the magnetic chain. For this reason, from now on we
shall consider only longitudinal phonons and, for notational simplicity, we shall label the
magnetoelastic tensor only with indices of the components in spin direction.

Taking the continuum limit for the spin product in (6):

SISV — SM()S"(2) + S“(z)aa%S”(z) ™

we finally obtain an interaction energy which is linear in the phonon field. Neglecting terms
of ordera2U;, we have

Hin, :/ %DuvaUk(Z)S“(Z)S"(Z). (8)
L a 0z

With the Lagrangian (1), the canonical density matrix may be written as the path integral
expression [7]

D(z,p)=%y U, (z,.p)=Uy
p[q)f,Uf,ﬂ;CDi,Ui,O]Zf/ Dq)/ DUkeXp{—S[CD(z,r),Ux(z,r)]}
U,

D(2,.0)=; 1(2,0=U;
9)
wherepg = 1/T is the ‘thermal’ time § = k3 = 1), andS is the Euclidean action
B
S[®, U] = / dr L[®(z, 1), Us(z, 1)]. (10)
0

Furthermore,Z = trp is the partition function of the spin-plus-reservoir system. The
reduceddensity matrix, which acts only on the subspacebofis calculated by performing
the trace over the coordinat&s of the reservoir. It may be written as

1 ®(z,8)=
Pred[ Py, B; ®i, 0] = Z / Do exp(—Ss[P(z, D]} Fin[P(z, T)]. (11)
Red J &(z,0)=9;
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The influence functional describing the influence of the thermal bath on the reduced system
is given by

Fing[@(z, 7)] = exp{—Sins[P]}

1
= eXp{_SCT[(D]}Z ]
p

Here the path sum is over all periodic paths of perigd U,(z,0) = U,(z,8) and

Z.ea = Z/Zp, is the partition function of the reduced system. Since the action inside
the influence functional (12) is quadratic in the phonon fidlgé:, ), the path summation

can be carried out exactly by solving Gaussian integrals [14]. Thus we obtain the influence
action

B B
Sl = - [ oo [ o [ & [k -z =BG ORE T (13)
0 0
The damping kernel is given by
1 {cosf(Qk,\[ﬂ/Z —lr=7hp 1 , } g k=2)
— S(t—1)¢ ———

f@m exXp—S,ulUs] — S, U1}, (12)

Ktrt-1tv,z-7)=

PRes I 8% Sinl’(Qk)”B/Z) 4.5'2]%}L 2
(14)
with the dispersion relatio;;, = v, |k.|, and the coupling functions
1 .9
Fi(z, T)z_;Dl};iaiZSM(Z’T)SU(Z’T)' (15)

The coupling functions (15) result from the interaction Hamiltonian (8) via partial
integration. The summation ovérin the expression (14) fol may be carried out exactly.

In section 4 we study the expression (14) in more detail in order to extract the form of
the spectral density connected with this kind of coupling. Before doing so, we introduce
in the next section the classical solutions of the sine—Gordon equation and the method of
collective coordinates.

3. Collective coordinates

The calculation of the density matrix for the unperturbed spin system (see equation (11)
with F;, set to 1) described by the sine—-Gordon Lagrangian (1) is usually performed within
the semiclassical approximation, in which the fluctuating fieldround the stationary paths

of the action is expanded up to second order. The stationary paths are solitary waves (the
so-called kinks and antikinks)

Dsi(z,7) = 4arctan{exp[i%y(z — vr)]} (16)

wherey = (1 —v?/c?)~Y2, and the sign+ (—) refers to kinks (antikinks). Because of

the translational invariance of the classical action associated with the solitary waves, the
fluctuations about the stationary path have a zero mode which needs special treatment [15].
To handle the zero mode appropriately, it is convenient to perform a canonical tranformation
to a new set of variables [16} (1), &. ()}, where the variablg () represents the centre

of the kink, usually referred to as the ‘collective coordinate’ [17], and wi§gre) is the
amplitude of the fluctuation mod¥;_(z). We then have

P (z, 1) = Pso(z — q(7)) + (2, 7) Nz, 1) = ﬁ ;Sk:(t)%z(z —q(@). (17)
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In (17), the zero mod&y(z) is omitted, and its part is played by the collective coordinate
q(7).

In this paper, we restrict ourselves to the low-temperature regime in which the kinks are
moving slowly so that the ‘nonrelativistic’ limit <« ¢ applies. Thus we may puyt ~ 1
in (16). On using the collective coordinat€r) instead ofvt, the LagrangianLs of the
system given in (3) takes the nonrelativistic form

LY g()] = Mso + 55 S"Z ¢2(v) (18)

with the soliton mas#/s,, = 8JSZa)oa/c3.

The partition function receives contributions from sectors of the Hilbert space
representing kinks anda antikinks. At low temperatures, the density of kinks and antikinks
is very small, so they may be treated as a noninteracting gas. In fact, it is sufficient to
consider the contributiong, and Z; of the zero- and one-soliton sector, respectively. Then
the partition function may be written in the form [18]

Z = Zoexp2L,nsy) (19)

whereng, = Z1/ZoL, describes the soliton density.
In the soliton-free sector, we have harmonic magnetic fluctuations, and the partition
function reads

> 1
Zo=[]-——~ 20
° BO 2sinh(w;_B/2) (20)

wherea)k = a)o + c2k2 is the dispersion relation of magnetic fluctuations [15].

In the one-soliton sector, the transformation to the collective coordinate gives rise
to a Lagrangian which is nonlinear in the fluctuations. According to [17], however, the
nonlinear contributions can be summed, and they lead to a renormalized soliton mass at
low temperature:

T |A
M. ~ Mgy |1 y 21
Sol Sl( + — 16S ) ( )

Now we are ready to separate the Lagrangian into a part describing harmonic fluctuations
and a part describing the soliton as a free partiel®, = Lg,; + L pyc:

Loalg@). 4] = My® + 0 (22)
SolLlq > q - Sol 2M301
Lrnel&. (1), &.(0] = 3 (& @ + of . (D). (23)
kz

The dispersion relation of the harmonic modes is the same as in the zero-soliton sector,
w,f = w§+c?k2. As aresult of the dynamical independence.gf; and L ., the partition
function in the one-soliton sector is in the factorized fof'® = Zs, Z riue, With

, M
VA ol = e_MSolczﬁ 7 Sol 24
s — @4
o 1
AT [ [ (25)

i o 2sinh(wy. B/2)
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In the soliton-free sector, the fluctuation&, t) are aboukby(z, r) = 0. Expanding in
the fluctuations up to second order, we find for the correlation functions
C9(z, 1) = (cosn(z, 1)) cogn(0, 0))@ ~ 1 — (%0, 0))@ = constant (26)
59z, 7) = (sin(n(z, 7)) sin((0, 0))© = (n(z, )n(0, 0))“. (27)
The transversal spin-correlation functi6t? (z, r) has two delta peaks in frequency space:

2

cEqwy. 1 — e B

SOk, w) = (S(w — ) — 8(w + ay.)). (28)

In the one-soliton sector, we may use again the above canonical transformation, the
decomposition (17), and the subsequent harmonic approximation for the fluctuation modes.
If the lengthL, of the system is large compared to the extensian, of the kink, the main
influence of the kink on the fluctuation modes is a phase shift at the centre of the kink.
Then we may use the eigenfunctions of the zero-soliton sector. Thus we find

CP(z, 1) = (COLDsyi(z, T) + 1(z, T)) COL D0 (0, 0) + (0, 0))) P

~ (oS Dy (2, 7)) COS D, (0, 00))P (1 — (2(0, 0))@)
H(SIN(@s01 (2, 7)) SIN(D 5,1 (0, 0))) P (n(z, T)n(0, 0))©. (29)

The transversal correlation function is calculated analogously.

The averages in the subspace of the collective coordinate are taken using standard
path-integral techniques. The longitudinal correlation function takes the form

1

C(l)(Z, 7) =
g Zsol

7§ Dq(x)e "1 cog @, (z — ¢ (1)) O D501 (—q (0))) (30)

with A®[¢(7)] being the action connected with the free-particle Lagrandign in (22).
In order to eliminate the dependence ®f,, on the integration variable(r), we use the
standard method of auxiliary variables. We then have

d diey ..
CW(z,0) = / dgo f dg: f o / S €06 OBy (2 — g1) COS P (—o)
JT
1 . .
x— fDq(r) exp(—AP[q(0)] + ixoq (0) + ik (7). (31)
Sol
The path integration with respect gt) can now be carried out exactly, yielding
2
ZsmgrS(Ko + k1) eXp(—KOU(T)> (32)
L, 4
with
8 &, 1-—codqv,t 2 | 2
o(t)= > L ("—2> (33)
Mg, —~ By Mg, \ B B

wherev, = 27n/g are the bosonic Matsubara frequencies.
Upon inserting the expression (16) fdr,, and integrating over the auxiliary variables
ko andy, we find for the longitudinal spin-correlation function

1 (90 — q1)?
szm(r)/ d‘”’/ d‘“exp<_ o (7) )

x (1 — 2sech (%(z - q1)>> (1 — 2sech (%qo)> . (34)

@ _
CP@. 1) =
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It is straightforward to perform the Fourier transformation with respect.toThen the
longitudinal correlation function takes the form

2 2 2
COk, 7) = (1— LSC )S(k) T Lzexp(—g(f)k > < ke > . (35)

Ro) Z 4 w3 sinh(k ¢ /2wo)

In the transversal spin-correlation functi(‘igil), the leading Bragg term is missing, and the
hyperbolic sine has to be replaced by the hyperbolic cosine.

The Fourier transformation with respect to the imaginary timeand subsequent
analytical continuatiorn, to —iw results in the unique replacement

oMK\ 2npMs, My, Y
exp(— 2 )—>|k|exp(— %2 w_zMgo, . (36)

This form is similar to a former result obtained by Mikeska [13]. As regards difference,
expression (36) also describes a shift of the maximum due to the possibility of thermal
activation of the soliton.

4. The spectral density

The coupling functions (15) contain summations over the components of the spins involved.
Since we are describing a magnetic system with strong in-plane anisotrogyctimeponent

of the spins is negligibly small, which is a condition for the validity of the sine—Gordon
model. Taking the direction of the movement of the kinks parallet,tave have only to

deal with the casegv = xx, xy, yx, yy in D%,

To introduce the collective coordinaigr), we first write the components of the spin
S(z, ) as functions of the angular fieldB(z, r) and6(z, ). Then we seb = =/2, and
finally we insert the classical solutions (16) fdr(z, ). Via this procedure, couplings
between magnetic fluctuations and phonons are disregarded, as they are represented by
fourth-order terms in the Lagrangian (1). We now have to distinguish between diagonal
coupling functions gv = xx, yy)

852wy sinh(x){cosH(x) — 2}

Fop = ————Dy, 37
c ¢ cosk(x) (37)

(Fyy/ Dy, = —Fy/Dy.), and nondiagonal coupling functiongi = xy, yx)

2 _
F — 287 @ny {8 — 8cosK(x) + cost(x)} (38)
’ c ¢ cosk(x)

(Fyx/Dyx = Fyy/Dyy), Wherey = wo[z — q(v)]/c. If there were antikinks instead of kinks
(replacingx by —x in (37) and (38)) this would lead to a reverse sign in the diagonal
coupling functions, and the same sign in the nondiagonal coupling functions. Clearly, the
related spectral densities are the same, as they are quadratic in the couplings.

Inserting these forms of the coupling functions into equation (13), and interchanging
the integration over the space with the sum over the phonon momenta, we obtain for the
influence functional the expression

o1 coshQulp/2—Ilt -7 1 ,
S""f[q’]__/o df/o o 2npRakZA{ 82, SN2 8/2) _4%5(“”}

<Y fulg(@] 5l (x"] (39)
ap
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where we have introduced the coupling functionélfg ()] (¢« = d, n standing for diagonal
and nondiagonal coupling respectively),

2 . B
fla@l = -2, —p,) / o gt SCO(cos ) — 2)
€ ¢ cost(x)

R imk? 21 rao

- ?T(D“ ~Pwis sink( ck. / 2w0) [2 wok‘} e (40)
fulg(@] = _Ziwo(D” +Dy) / de ka8 8 cosi(x) + cost(x)

cosP(x)
— 282 (2 JTkZZ 2 2] koo
= - ?;é(ny' + D,Vx)3cosl'(7TCkZ/2wo) [ - kaZ:| e . (41)

There are three different combinations of the coupling functions. The first possibility
is the combination of a diagonal with a nondiagonal function. This contribution vanishes
for symmetry reaons. The second case is diagonal-diagonal (dd) coupling, in which two
coupling functions of the type (40) are combined. Since we restrict ourselves to the
nonrelativistic limit, it is sufficient to expand (39) in terms @fr) — ¢g(z’) up to second
order. Replacing the sum ovgy by an integral over the phonons energywe finally get

dd) ~ 1 s P ! 1 (dd) l N2
Sing = zf dffo do’K“D(r — ) (q(x) — q (") (42)
with the damping kernel

K@) _ /oo dw coshw[f/2 — |t — 7'[])
0 sinhwB/2)
and where the spectral density of the coupling [7, 19] takes the form

5 2 2
e O GV

The constantlédd) is related to the strength of the magnetoelastic interaction by

J 9D () (43)

(dd) _ n? @o s 2 2
J 36 c a4UApR€S {(Dxx) ZDxnyy + (Dyy) } (45)
Here we introduced the frequeney, = v, wp/c corresponding to a phonon wavelength
which is of the order of the width of the kink. Below we shall see thais the characteristic
frequency of the dissipative process.

The third case is nondiagonal-nondiagonal (nn) coupling. The spectral density of the
coupling resulting from similar calculations is

5 2 2
o (N[ fli)
w1 w1 2 w1

with the coupling parameter

7'[ wo S4
= — (D, 2D, Dy, + (Dy, 47

3 2 gtz (D) + 2Dy Dus (D7) (a7)
The functions/J“4 (w) and J ™ (w) are shown in figure 1.

The damping constantg”” and J{™” have similar structure, and numerically they are

of the same order of magnitude. If in addition the components of the magnetoelastic tensor
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4 T T 1 T T

J(w)/Jo

15

05 i

w/wy

Figure 1. The spectral densities@? (w), J™ (w) according to (44) and (46). The only
differences between these densities appear far belewr »;, and are of minor importance.

D, are similar in magnitude, the (dd) coupling is suppressed, but not the (nn) coupling.
For tetragonal symmetry, we havg,, = D,,, so only the (nn) coupling is active.

The spectral densities™ (w) and J“? () are zero aw = +/2w;,. Hence, phonons
with frequency within the frequency gap are decoupled from the kink and do not participate
in the dissipation.

We find two peaks in the spectral densities. The major one is located near to
wmax ~ 3.2w1 ~ Tw;. Connected with this frequency there is a wave vekiQr ~ Two/c,
and a typical length* ~ 2¢/wg, which is of the order of magnitude of the extension of
a static kink. Phonons having energies arousg, contribute most effectively to the
dissipation.

A much smaller peak is found near = 0.8»;. The magnitude of this peak differs
between/ “d (w) and J "™ (w). The typical length related to this frequency i$ 4¢ 8¢/wo.

Since the spectral densities decay A®) x o’ exp(—rw/w;) for large w, there is
no UV divergence whem; is finite. Note that a Debye cut-off in the phonon dispersion
relation, typically atw = wp = 27v; /a, has little effect, since this cut-off frequency is
ususally much higher than the resonance frequansy,,, as, e.g., in CsNif:

For smallw, the densities behave d$? (w) x ® andJ " (w) & w®, describing deep
superohmic behaviour [19]. At this point it is interesting to note that Garg and Kim [4]
found J (w) o« w® for the single-domain particles.

An interesting result is that most of the damping comes from phonons with energies near
wmax- This may be used to design or select materials with special dissipative characteristics.
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For instance, a material with high phonon density around this energy will exhibit quite large
dissipative effects. On the other hand, if the phonon density is high within the gap near
V2w1, the material will show very weak dissipation.

5. Partition function and correlation functions in the presence of phonon damping

The forms (44) and (46) are far too complicated for performing calculations in analytic
form. In a reasonable approximation, only phonons at the resonance frequeney 7w,
may be taken into account. Matching the integrals over the spectral densities, we then have

J(w) ~ 9w1Joé(w — Twy) (48)

where the superscripts (dd) and (nn) indicating the coupling symmetry have been omitted.
This approximation would be very rough if we were looking at the damping coefficient
y(w) whose real part is related to the spectral dengity) by y'(w) x J(w)/w. On the

other hand, it gives reasonable approximation for the damping kernel, which is an integral
over the spectral density:

~ 2 [ J 18/, 2
R(v) = 7[ dwwz (a))2 L 180 o . (49)
7B Jo w® + v B vZ+ 2w
The full kernel is compared with the approximate one in figure 2.
1 1 ¥ T 1
0.9 . 4
. K(vy), exact
08 L N K(v,), Lorenz with § =7 ———— i
0.7 }
&Y
X s}
S
X osf
=
S
2 o4l
g
03}
02
0.1}
0 1 i i i
0 2 4 6 8 10

Un[wy

Figure 2. The Fourier transform of the damping kernélv,) with the spectral density (44)
and with the approximation (48).
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The partition function is modified due to the influence functional [7]

B B 0 ~ -
Ainslg()] =%/0 dr/o dr' K (t = t)(g(x) —q(')* = B> > 14l (K(0) — K(vy).

n=—00

(50)

As (50) is quadratic iy (but nonlocal in imaginary time), the partition function may be
calculated without difficulty. We find that the form (24) is changed into

M}, 2B M_/S‘ol @2 sinh(rw18/2)

Zso =€ - 51
Sol 218 w1 SiNN(TwzB/2) (1)
where
36J,
Mg, wim

Figure 3 shows that the approximation (48) leads to results which are in fairly good
agreement with the exact numerical results for the partition function for different coupling
strengthsC = 36Jo/ M}, w3n®. The approximation gets less appropriate as the temperature
is lowered. This is because (48) does not describe correctly the low-frequency behaviour
of the spectral density.

1 3 T T T T
09 -\‘\‘ .
. \\\\ C = 0.5 (app) ——
0.8 |- \ \ C=0.5@mm) ——- ]
!‘\ \ C=1.0 (app.) ------
0.7 | (WY C=10 (num.) 4
\ \\ C=20 (app.) —————
06 \ \\ C=20 (num.) --remeee e
N o5}
04 |
03 |
0.2
0.1 F
0
0

Figure 3. The partition function (51) for different coupling strengtfis= 36]0/M§0,w§n4 in
comparison with exact numerical results.
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The correlation functions are modified similarly. The only place where the imaginary
time ¢ appears inC{"(z, 7) is in the functions () given in (33). This quantity now takes
the form

o = (1T TP 20p w1B)  coshws[B/2 - I7I])
6(t) =2B8Mg,ap <,3 — 132> + oML, (Coth<2> — sinh(@sf2) ) (52)

wherews = mwy, andap = 1 — w?/w3 andap = w?/w3 are the damping parameters.

From (36) we see how to perform the analytical continuation of an exponential function
containing termsx t and oc 2. Therefore, we expand e&ps (7)k?/4) with (52) into a
sum of exponentials and perform the analytical continuation for each term separately. The
result is

& (1)k? 2nBMs,, apk? w3f
_ N o _ h( 238
oXp ( 4 ) apk? eXp 2w3My,, cot 2

> O[[)kz
I gwsb/2
x 2 <4w3MgU, Sinh(wsﬂ/2)>

I=—00

BMS, apk? \?
xexp(— Z&Dské <w—lw3—%> > (53)
where;(z) is a modified Bessel function.

The interpretation of this result is as follows. The expression (53) contains a major
peak at/ = 0 which by far dominates over all the other peaks. The distance between
neighbouring peaks ims = mwi/+/@p, Which is increasing with increasing dissipation
strength. The additional peaks in the scattering function are signatures of the interaction of
the soliton with the phonon bath. Because of the interactions, a neutron may be scattered
by the soliton thereby emitting or absorbing a phonon simultaneously. Similar peaks have
been predicted in an isotropic Heisenberg system by Fivez and De Raedt [20] using the
Mori formalism.

The change of the central peak indicates that the soliton mass is increased according
to M,rr = Mg, /(1 —ap). The low-frequency part of the spectral density influences the
dynamics of the soliton at long times. On the other hand, the high-frequency part gives rise
to mass renormalization. The change of the mass is given by [19]

2 (® dw M, ap
AMyy = p / Ejhf(w) = m-

A realistic estimate [4, 21] of the relevant components of the magnetoelastic ®fjsor
givesap ~ 0.06. Hence the phonon damping is very weak. The change of the transversal
spin-correlation function for this value ofp is shown in figure 4.

(54)

6. Concluding remarks

In this paper, we have suggested a mechanism for the coupling of a solitary solution of
the sine—Gordon equation to an environment of phonons. Upon employing the method
of collective coordinates, we have mapped the original problem onto that of a free particle
moving under the influence of friction. The related spectral density of the coupling has been
calculated. It shows a pronounced maximum at a resonance frequency which corresponds
to phonons with a wavelength comparable to the spatial extent of the soliton.

Taking into account the resulting form of the spectral density, we have calculated the
longitudinal and transversal spin-correlation functions. We have found that the coupling to
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Figure 4. The transversal spin-correlation functiditw, k) at k = —0.9wo/c with the realistic
strengthap = 0.06. Only the lower part of the major peak at aroung= 0 appears.

lattice vibrations gives rise to additional peaks in the structure factor for neutron scattering.
The separation of these peaks depends essentially on the resonance frequency, but increases
with increasing damping. The relative intensity of such peaks crucially depends on the
damping strength. A possible material for which to study spin relaxation in quasi-one-
dimensional systems by neutron scattering is CgNiRs the material is insulating, the
dominant dissipative effects are due to the coupling to lattice vibrations, and the theoretical
study presented here should apply.
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