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Abstract. We study the coupling of solitary solutions of a magnetic Hamiltonian with strong
easy-plane anisotropy to longitudinal phonon excitations of the surrounding medium. The
spectral density of the coupling describing frequency-dependent damping is calculated. The spin-
correlation functions and the partition function of the dissipative magnetic system are computed.

1. Introduction

In the past, several attempts have been made to introduce dissipation into magnetic systems
described by the Heisenberg Hamiltonian and its ‘relatives’. Among these are two very
important subjects. The first is the sine–Gordon system, of which a good overview has
been given by Bishopet al [1], and the second is the field of single-domain particles
[2]. Most of the results concerned with these topics, including environmental effects, are
collected together in a review by Stampet al [3]. The present paper is concerned with the
dissipative sine–Gordon system. The influence of dissipation has been discussed previously
within the problem of single-domain particles.

Garg and Kim [4] assumed that the magnetization of a single-domain particle is
coupled to a bath of phonons via the magnetoelastic tensor. In what follows, we will
provide a generalization of their approach to the sine–Gordon field problem. A more
phenomenological approach was followed by Losset al [5], who described the dissipative
motion of the azimuthal angle8 of the total magnetization via a bilinear coupling of8̇ to
the phonon coordinate.

In the sine–Gordon problem also, several dissipative models were established. In some
of the studies [6], a phenomenological system-plus-reservoir model [7] with a bilinear
coupling in the sine–Gordon field8(x, τ) and in the environmental coordinates has
been studied. Ḧanggi et al [8] supplemented the classical equation of motion with a
phenomenological damping term−η8̇. The sameansatz was used by McLaughlin and
Overman [9], who studied the thermal decay of breather solutions of the sine–Gordon
equation. A slightly different damping term,α8̇ − β8̇′′, was used by Salernoet al
[10]. Clearly, in order to justify the phenomenological approaches microscopically, one
has to investigate the coupling of the magnetic degrees of freedom to the elementary
excitations of the surrounding medium. Wada and co-workers [11] examined the nonlinear
interaction between solitary excitations and linear oscillating modes of the sine–Gordon
equation, and, as a result of the coupling, they found diffusive motion of the former. Quite
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similarly, Rostiashvili and Schilling [12] showed that the coupling of domain walls to
spatial fluctuations of the magnetization leads to an effective kink–kink interaction. Here
we investigate the coupling of the sine–Gordon field to the surrounding lattice vibrations.

In section 2 we introduce the Lagrangian of the sine–Gordon system with the coupling
to a bath of phonons. In section 3, the phonons are eliminated from the description, and
the dynamics of the sine–Gordon field8 is reduced to that of a collective coordinate. The
partition function and the spin-correlation functions are calculated using the path-integral
formulation. The spectral density of the coupling is studied in some detail in section 4.
Before summarizing our work in section 6, we discuss in section 5 results for the change
of the partition function and spin-correlation functions under the influence of the phonon
coupling.

2. System-plus-reservoir models

The Lagrangian of an anisotropic magnetic system interacting with a thermal reservoir of
phonons may be written as

L = LS + Lph + Lint + LCT (1)

whereLs describes the magnetic system,Lph the thermal bath of phonons, andLint is the
interaction between the spins and the phonons. Under the assumption that any one phonon
degree of freedom is only weakly perturbed, the interaction may be chosen to be linear
in the phonon variables. However,Lint does not need to be linear in the magnetization.
The last part of the Lagrangian is a counter-term which has been included to compensate
potential renormalization effects due to the coupling [7].

The Lagrangian of the unperturbed one-dimensional spin system (directed along the
z-axis) can be taken as the Lagrangian of the sine–Gordon problem which is deduced in
the case of strong easy-plane anisotropy [13] from the continuum limit of the ferromagnetic
Heisenberg Hamiltonian:

ĤH = −
∑
〈i,j〉

J Ŝi · Ŝj + A
∑

i

(Ŝz
i )

2 − gµBB
∑

i

Ŝx
i . (2)

HereJ is the exchange integral,A is the anisotropy energy (A > 0), andB is an externally
applied magnetic field directed along thex-axis. The sum

∑
〈i,j〉 runs over pairs of nearest

neighbours only. To perform the continuum limit, it is convenient to introduce a basis
of coherent spin states|Ω〉, satisfyingΩ · Ŝ|Ω〉 = S|Ω〉, whereS is the spin eigenvalue
andΩ ≡ (sinθ cos8, sinθ sin8, cosθ) is a vector on the unit sphere associated with the
spin direction. The partition function of the spin system may be written as a path integral
over the spin configurationsΩ(z, τ ). In the limit of strong anisotropy, the path integral is
dominated by the stationary solutionθ(z, τ ) = π/2. Within the Gaussian approximation
for the fluctuations about these paths, the integration overθ can easily be performed. This
procedure results in an effective Euclidean Lagrangian depending only on the angle8

between the spin and thex-axis. In the limit of vanishing lattice spacing, the action takes
the continuous form

LS [8(z, τ)] = E0a

∫
dz

{
1

2c2
8̇2 + 1

2

(
∂8

∂z

)2

+ ω2
0

c2
(1 − cos(8))

}
(3)

where c = (2a2JAS2)1/2 and ω0 = (2gµBBS)1/2 are the characteristic velocity and
frequency of the sine–Gordon problem, respectively. The energy scaleE0 = JS2 is chosen
in accordance with the Heisenberg model, anda is the lattice spacing along thez-axis.
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The phonon part of the Lagrangian describing a continuous set of 1D phonons
propagating along the chain reads

Lph[Uλ(z, τ )] = ρRes

∑
λ

∫
dz

{
1

2
U̇2

λ + v2
λ

2

(
∂Uλ

∂z

)2
}

(4)

whereρRes is the mass density of the crystal, andUλ(z, τ ) is theλ- (= x, y, z-) component
of the phonon fieldU (z, τ ).

We introduce the interaction between the magnetic system described by the Heisenberg
Hamiltonian (2) and lattice vibrations (4) by allowing the exchange integralJ to vary with
the displacement of the relative position of nearest-neighbour sites carrying the spins. Since
the variation might be different for different components ofS (because of the anisotropy
of the underlying solid), the exchange integralJ has to be regarded as a tensor:

J → Jµν(Ri − Rj ) ≈ Jδµν + (uλ
i − uλ

j )
∂Jµν

∂xλ
i

∣∣∣∣Ri=R0
i

Rj =R0
j

(5)

whereuλ
i = xλ

i − z0
i δλz is the displacement ofith spin from the equilibrium position. In the

continuum limit, this will be replaced by the phonon fieldUλ(z, τ ) according to

Jµν(zi − zj )S
µ

i Sν
j ≈ J (z0

i − z0
j )δµνS

µ

i S
µ

j + ∂Uλ(z, τ )

∂z
Dλz

µνS
µ

i Sν
j (6)

where we have introduced the magnetoelastic tensorDλz
µν = a(∂/∂xλ)Jµν(a).

In the case of an exchange interaction depending only on the distance|Ri − Rj |, the
quantity ∂Jµν(|R|)/∂xλ is different from zero only forλ = z, which means that only
longitudinal phonons are coupled to the magnetic chain. For this reason, from now on we
shall consider only longitudinal phonons and, for notational simplicity, we shall label the
magnetoelastic tensor only with indices of the components in spin direction.

Taking the continuum limit for the spin product in (6):

S
µ

i Sν
i+1 → Sµ(z)Sν(z) + Sµ(z)a

∂

∂z
Sν(z) (7)

we finally obtain an interaction energy which is linear in the phonon field. Neglecting terms
of ordera2Uλ, we have

Hint =
∫

Lz

dz

a
Dµν

∂Uλ(z)

∂z
Sµ(z)Sν(z). (8)

With the Lagrangian (1), the canonical density matrix may be written as the path integral
expression [7]

ρ[8f , Uf , β; 8i, Ui, 0] = 1

Z

∫ 8(z,β)=8f

8(z,0)=8i

D8

∫ Uλ(z,β)=Uf

Uλ(z,0)=Ui

DUλ exp{−S[8(z, τ), Uλ(z, τ )]}
(9)

whereβ = 1/T is the ‘thermal’ time (h̄ = kB = 1), andS is the Euclidean action

S[8, U ] =
∫ β

0
dτ L[8(z, τ), Uλ(z, τ )]. (10)

Furthermore,Z = tr ρ is the partition function of the spin-plus-reservoir system. The
reduceddensity matrix, which acts only on the subspace of8, is calculated by performing
the trace over the coordinatesUλ of the reservoir. It may be written as

ρRed [8f , β; 8i, 0] = 1

ZRed

∫ 8(z,β)=8f

8(z,0)=8i

D8 exp{−SS [8(z, τ)]}Finf [8(z, τ)]. (11)
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The influence functional describing the influence of the thermal bath on the reduced system
is given by

Finf [8(z, τ)] ≡ exp{−Sinf [8]}
= exp{−SCT [8]} 1

Zph

∮
DUλ exp{−Sph[Uλ] − Sint [8, Uλ]}. (12)

Here the path sum is over all periodic paths of periodβ, Uλ(z, 0) = Uλ(z, β) and
Zred ≡ Z/Zph is the partition function of the reduced system. Since the action inside
the influence functional (12) is quadratic in the phonon fieldsUλ(z, τ ), the path summation
can be carried out exactly by solving Gaussian integrals [14]. Thus we obtain the influence
action

Sinf [8] = −
∫ β

0
dτ

∫ β

0
dτ ′

∫
dz

∫
dz′ K(τ − τ ′, z − z′)Fλ(z, τ )Fλ(z

′, τ ′). (13)

The damping kernel is given by

K(τ − τ ′, z − z′) = 1

ρRes

∑
kλ

{
cosh(�kλ[β/2 − |τ − τ ′|])

8�kλ sinh(�kλβ/2)
− 1

4�2
kλ

δ(τ − τ ′)
}

e−ikz(z−z′)

2π

(14)

with the dispersion relation�kλ = νλ|kz|, and the coupling functions

Fλ(z, τ ) = −1

a
Dλz

µν

∂

∂z
Sµ(z, τ )Sν(z, τ ). (15)

The coupling functions (15) result from the interaction Hamiltonian (8) via partial
integration. The summation overk in the expression (14) forK may be carried out exactly.
In section 4 we study the expression (14) in more detail in order to extract the form of
the spectral density connected with this kind of coupling. Before doing so, we introduce
in the next section the classical solutions of the sine–Gordon equation and the method of
collective coordinates.

3. Collective coordinates

The calculation of the density matrix for the unperturbed spin system (see equation (11)
with Finf set to 1) described by the sine–Gordon Lagrangian (1) is usually performed within
the semiclassical approximation, in which the fluctuating field8 around the stationary paths
of the action is expanded up to second order. The stationary paths are solitary waves (the
so-called kinks and antikinks)

8Sol(z, τ ) = 4 arctan
{

exp
[
±ω0

c
γ (z − vτ)

]}
(16)

whereγ = (1 − v2/c2)−1/2, and the sign+ (−) refers to kinks (antikinks). Because of
the translational invariance of the classical action associated with the solitary waves, the
fluctuations about the stationary path have a zero mode which needs special treatment [15].
To handle the zero mode appropriately, it is convenient to perform a canonical tranformation
to a new set of variables [16]{q(τ), ξkz

(τ )}, where the variableq(τ) represents the centre
of the kink, usually referred to as the ‘collective coordinate’ [17], and whereξkz

(τ ) is the
amplitude of the fluctuation mode9kz

(z). We then have

8(z, τ) = 8Sol(z − q(τ)) + η(z, τ ) η(z, τ ) = c√
E0a

∑
kz

ξkz
(τ )9kz

(z − q(τ)). (17)
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In (17), the zero mode90(z) is omitted, and its part is played by the collective coordinate
q(τ).

In this paper, we restrict ourselves to the low-temperature regime in which the kinks are
moving slowly so that the ‘nonrelativistic’ limitν � c applies. Thus we may putγ ≈ 1
in (16). On using the collective coordinateq(τ) instead ofvτ , the LagrangianLS of the
system given in (3) takes the nonrelativistic form

L
(sol)
S [q(τ)] = MSol + MSol

2c2
q̇2(τ ) (18)

with the soliton massMSol = 8JS2ω0a/c3.
The partition function receives contributions from sectors of the Hilbert space

representingn kinks andn̄ antikinks. At low temperatures, the density of kinks and antikinks
is very small, so they may be treated as a noninteracting gas. In fact, it is sufficient to
consider the contributionsZ0 andZ1 of the zero- and one-soliton sector, respectively. Then
the partition function may be written in the form [18]

Z = Z0 exp(2LznSol) (19)

wherenSol = Z1/Z0Lz describes the soliton density.
In the soliton-free sector, we have harmonic magnetic fluctuations, and the partition

function reads

Z0 =
∞∏

kz=0

1

2 sinh(ωkz
β/2)

(20)

whereω2
kz

= ω2
0 + c2k2

z is the dispersion relation of magnetic fluctuations [15].
In the one-soliton sector, the transformation to the collective coordinate gives rise

to a Lagrangian which is nonlinear in the fluctuations. According to [17], however, the
nonlinear contributions can be summed, and they lead to a renormalized soliton mass at
low temperature:

M ′
Sol ≈ MSol

(
1 + π

16S

√
A

J

)
. (21)

Now we are ready to separate the Lagrangian into a part describing harmonic fluctuations
and a part describing the soliton as a free particle,L(1) = LSol + LFluc:

LSol [q(τ), q̇(τ )] = M ′
Solc

2 + q̇2(τ )

2M ′
Sol

(22)

LFluc[ξkz
(τ ), ξ̇kz

(τ )] = 1
2

∑
kz

(|ξkz
(τ )|2 + ω2

kz
|ξ̇kz

(τ )|2). (23)

The dispersion relation of the harmonic modes is the same as in the zero-soliton sector,
ω2

kz
= ω2

0 +c2k2
z . As a result of the dynamical independence ofLSol andLFluc, the partition

function in the one-soliton sector is in the factorized formZ(1) = ZSolZFluc, with

ZSol = e−M ′
Solc

2β

√
M ′

Sol

2πβ
(24)

ZFluc =
∞∏

kz=0

1

2 sinh(ωkz
β/2)

. (25)
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In the soliton-free sector, the fluctuationsη(z, τ ) are about80(z, τ ) ≡ 0. Expanding in
the fluctuations up to second order, we find for the correlation functions

C(0)(z, τ ) ≡ 〈cos(η(z, τ )) cos(η(0, 0))〉(0) ≈ 1 − 〈η2(0, 0)〉(0) = constant (26)

S(0)(z, τ ) ≡ 〈sin(η(z, τ )) sin(η(0, 0))〉(0) ≈ 〈η(z, τ )η(0, 0)〉(0). (27)

The transversal spin-correlation functionS(0)(z, τ ) has two delta peaks in frequency space:

S̃(0)(k, ω) = c2

cE0ωkz

1

1 − e−ωβ
(δ(ω − ωkz

) − δ(ω + ωkz
)). (28)

In the one-soliton sector, we may use again the above canonical transformation, the
decomposition (17), and the subsequent harmonic approximation for the fluctuation modes.
If the lengthLz of the system is large compared to the extensionc/ω0 of the kink, the main
influence of the kink on the fluctuation modes is a phase shift at the centre of the kink.
Then we may use the eigenfunctions of the zero-soliton sector. Thus we find

C(1)(z, τ ) = 〈cos(8Sol(z, τ ) + η(z, τ )) cos(8Sol(0, 0) + η(0, 0))〉(1)

≈ 〈cos(8Sol(z, τ )) cos(8Sol(0, 0))〉(1)(1 − 〈η2(0, 0)〉(0))

+〈sin(8Sol(z, τ )) sin(8Sol(0, 0))〉(1)〈η(z, τ )η(0, 0)〉(0). (29)

The transversal correlation function is calculated analogously.
The averages in the subspace of the collective coordinate are taken using standard

path-integral techniques. The longitudinal correlation function takes the form

C(1)
q (z, τ ) = 1

ZSol

∮
Dq(τ)e−A(1)[q(τ)] cos(8sol(z − q(τ))) cos(8Sol(−q(0))) (30)

with A(1)[q(τ)] being the action connected with the free-particle LagrangianLSol in (22).
In order to eliminate the dependence of8Sol on the integration variableq(τ), we use the
standard method of auxiliary variables. We then have

C(1)
q (z, τ ) =

∫
dq0

∫
dq1

∫
dκ0

2π

∫
dκ1

2π
eiκ0q0eiκ1q1 cos(8Sol(z − q1)) cos(8Sol(−q0))

× 1

ZSol

∮
Dq(τ) exp(−A(1)[q(τ)] + iκ0q(0) + iκ1q(τ)). (31)

The path integration with respect toq(τ) can now be carried out exactly, yielding

ZSol

2π

Lz

δ(κ0 + κ1) exp

(
−κ2

0

4
σ(τ)

)
(32)

with

σ(τ) = 8

M ′
Sol

∞∑
n=1

1 − cos(νnτ )

βν2
n

= 2β

M ′
Sol

( |τ |
β

− τ 2

β2

)
(33)

whereνn = 2πn/β are the bosonic Matsubara frequencies.
Upon inserting the expression (16) for8Sol and integrating over the auxiliary variables

κ0 andκ1, we find for the longitudinal spin-correlation function

C(1)
q (z, τ ) = 1

Lz

√
πσ(τ)

∫
dq0

∫
dq1 exp

(
− (q0 − q1)

2

σ(τ)

)
×

(
1 − 2 sech2

(ω0

c
(z − q1)

)) (
1 − 2 sech2

(ω0

c
q0

))
. (34)
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It is straightforward to perform the Fourier transformation with respect toz. Then the
longitudinal correlation function takes the form

C(1)
q (k, τ ) =

(
1 − 8c

Lzω0

)
δ(k) + 2

Lz

exp

(
−σ(τ)k2

4

) (
πkc2

ω2
0 sinh(kπc/2ω0)

)2

. (35)

In the transversal spin-correlation functionS(1)
q , the leading Bragg term is missing, and the

hyperbolic sine has to be replaced by the hyperbolic cosine.
The Fourier transformation with respect to the imaginary timeτ and subsequent

analytical continuationνn to −iω results in the unique replacement

exp

(
−σ(τ)k2

4

)
→

√
2πβM ′

Sol

|k| exp

(
− βM ′

Sol

2k2

(
ω − k2

2M ′
Sol

)2 )
. (36)

This form is similar to a former result obtained by Mikeska [13]. As regards difference,
expression (36) also describes a shift of the maximum due to the possibility of thermal
activation of the soliton.

4. The spectral density

The coupling functions (15) contain summations over the components of the spins involved.
Since we are describing a magnetic system with strong in-plane anisotropy, thez-component
of the spins is negligibly small, which is a condition for the validity of the sine–Gordon
model. Taking the direction of the movement of the kinks parallel toz, we have only to
deal with the casesµν = xx, xy, yx, yy in Dλz

µν .
To introduce the collective coordinateq(τ), we first write the components of the spin

S(z, τ ) as functions of the angular fields8(z, τ) and θ(z, τ ). Then we setθ ≡ π/2, and
finally we insert the classical solutions (16) for8(z, τ). Via this procedure, couplings
between magnetic fluctuations and phonons are disregarded, as they are represented by
fourth-order terms in the Lagrangian (1). We now have to distinguish between diagonal
coupling functions (µν = xx, yy)

Fxx = −8S2

c

ω0

c
Dxx

sinh(χ){cosh2(χ) − 2}
cosh5(χ)

(37)

(Fyy/Dyy = −Fxx/Dxx), and nondiagonal coupling functions (µν = xy, yx)

Fxy = −2S2

c

ω0

c
Dxy

{8 − 8 cosh2(χ) + cosh4(χ)}
cosh5(χ)

(38)

(Fyx/Dyx = Fxy/Dxy), whereχ = ω0[z − q(τ)]/c. If there were antikinks instead of kinks
(replacingχ by −χ in (37) and (38)) this would lead to a reverse sign in the diagonal
coupling functions, and the same sign in the nondiagonal coupling functions. Clearly, the
related spectral densities are the same, as they are quadratic in the couplings.

Inserting these forms of the coupling functions into equation (13), and interchanging
the integration over the space with the sum over the phonon momenta, we obtain for the
influence functional the expression

Sinf [8] = −
∫ β

0
dτ

∫ β

0
dτ ′ 1

2πρRes

∑
kλ

{
cosh(�kλ[β/2 − |τ − τ ′|])

8�kλ sinh(�kλβ/2)
− 1

4�2
kλ

δ(τ − τ ′)
}

×
∑
αβ

fα[q(τ)]fβ [q(τ ′)] (39)



4038 F Napoli et al

where we have introduced the coupling functionalsfα[q(τ)] (α = d, n standing for diagonal
and nondiagonal coupling respectively),

fd [q(τ)] = −8S2

c

ω0

c
(Dxx − Dyy)

∫
dz eikzz

sinh(χ){cosh2(χ) − 2}
cosh5(χ)

= − 8S2

c

c2

ω2
0

(Dxx − Dyy)
iπk2

z

12 sinh(πckz/2ω0)

[
2 − c2

ω2
0

k2
z

]
eikzq(τ ) (40)

fn[q(τ)] = −2S2

c

ω0

c
(Dxy + Dyx)

∫
dz eikzz

8 − 8 cosh2(χ) + cosh4(χ)

cosh5(χ)

= − 2S2

c

c2

ω2
0

(Dxy + Dyx)
πk2

z

3 cosh(πckz/2ω0)

[
2 − c2

ω2
0

k2
z

]
eikzq(τ ). (41)

There are three different combinations of the coupling functions. The first possibility
is the combination of a diagonal with a nondiagonal function. This contribution vanishes
for symmetry reaons. The second case is diagonal–diagonal (dd) coupling, in which two
coupling functions of the type (40) are combined. Since we restrict ourselves to the
nonrelativistic limit, it is sufficient to expand (39) in terms ofq(τ) − q(τ ′) up to second
order. Replacing the sum overkz by an integral over the phonons energyω, we finally get

S
(dd)
inf

∼= 1
2

∫ β

0
dτ

∫ β

0
dτ ′K(dd)(τ − τ ′)(q(τ ) − q(τ ′))2 (42)

with the damping kernel

K(dd) =
∫ ∞

0

dω

π

cosh(ω[β/2 − |τ − τ ′|])
sinh(ωβ/2)

J (dd)(ω) (43)

and where the spectral density of the coupling [7, 19] takes the form

J (dd)(ω) = J
(dd)

0

(
ω

ω1

)5
[(

ω

ω1

)2

− 2

]2 /
sinh2

(
π

2

ω

ω1

)
. (44)

The constantJ (dd)

0 is related to the strength of the magnetoelastic interaction by

J
(dd)

0 = π2

36

ω0

c

S4

a4v2
λρRes

{(Dxx)
2 − 2DxxDyy + (Dyy)

2}. (45)

Here we introduced the frequencyω1 = vλω0/c corresponding to a phonon wavelength
which is of the order of the width of the kink. Below we shall see thatω1 is the characteristic
frequency of the dissipative process.

The third case is nondiagonal-nondiagonal (nn) coupling. The spectral density of the
coupling resulting from similar calculations is

J (nn)(ω) = J
(nn)

0

(
ω

ω1

)5
[(

ω

ω1

)2

− 2

]2 /
cosh2

(
π

2

ω

ω1

)
(46)

with the coupling parameter

J
(nn)

0 = π2

36

ω0

c

S4

a4v2
λρRes

{(Dxy)
2 + 2DxyDyx + (Dyx)

2}. (47)

The functionsJ (dd)(ω) andJ (nn)(ω) are shown in figure 1.
The damping constantsJ (dd)

0 andJ
(nn)

0 have similar structure, and numerically they are
of the same order of magnitude. If in addition the components of the magnetoelastic tensor
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Figure 1. The spectral densitiesJ (dd)(ω), J (nn)(ω) according to (44) and (46). The only
differences between these densities appear far belowω ≈ πω1 and are of minor importance.

Dµν are similar in magnitude, the (dd) coupling is suppressed, but not the (nn) coupling.
For tetragonal symmetry, we haveDxx = Dyy , so only the (nn) coupling is active.

The spectral densitiesJ (nn)(ω) and J (dd)(ω) are zero atω = √
2ω1. Hence, phonons

with frequency within the frequency gap are decoupled from the kink and do not participate
in the dissipation.

We find two peaks in the spectral densities. The major one is located near to
ωmax ≈ 3.2ω1 ≈ πω1. Connected with this frequency there is a wave vectorkmax ≈ πω0/c,
and a typical lengthl∗ ≈ 2c/ω0, which is of the order of magnitude of the extension of
a static kink. Phonons having energies aroundωmax contribute most effectively to the
dissipation.

A much smaller peak is found nearω = 0.8ω1. The magnitude of this peak differs
betweenJ (dd)(ω) andJ (nn)(ω). The typical length related to this frequency is 4l∗ ≈ 8c/ω0.

Since the spectral densities decay asJ (ω) ∝ ω7 exp(−πω/ω1) for large ω, there is
no UV divergence whenω1 is finite. Note that a Debye cut-off in the phonon dispersion
relation, typically atω = ωD = 2πvλ/a, has little effect, since this cut-off frequency is
ususally much higher than the resonance frequancyπωmax , as, e.g., in CsNiF3.

For smallω, the densities behave asJ (dd)(ω) ∝ ω3 andJ (nn)(ω) ∝ ω5, describing deep
superohmic behaviour [19]. At this point it is interesting to note that Garg and Kim [4]
found J (ω) ∝ ω3 for the single-domain particles.

An interesting result is that most of the damping comes from phonons with energies near
ωmax . This may be used to design or select materials with special dissipative characteristics.
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For instance, a material with high phonon density around this energy will exhibit quite large
dissipative effects. On the other hand, if the phonon density is high within the gap near√

2ω1, the material will show very weak dissipation.

5. Partition function and correlation functions in the presence of phonon damping

The forms (44) and (46) are far too complicated for performing calculations in analytic
form. In a reasonable approximation, only phonons at the resonance frequencyωres ≈ πω1

may be taken into account. Matching the integrals over the spectral densities, we then have

J (ω) ≈ 9ω1J0δ(ω − πω1) (48)

where the superscripts (dd) and (nn) indicating the coupling symmetry have been omitted.
This approximation would be very rough if we were looking at the damping coefficient
γ (ω) whose real part is related to the spectral densityJ (ω) by γ ′(ω) ∝ J (ω)/ω. On the
other hand, it gives reasonable approximation for the damping kernel, which is an integral
over the spectral density:

K̃(νn) = 2

πβ

∫ ∞

0
dω

ωJ(ω)

ω2 + ν2
n

≈ 18J0

β

ω2
1

ν2
n + π2ω2

1

. (49)

The full kernel is compared with the approximate one in figure 2.

Figure 2. The Fourier transform of the damping kernelK̃(νn) with the spectral density (44)
and with the approximation (48).
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The partition function is modified due to the influence functional [7]

Ainf [q(τ)] = 1
2

∫ β

0
dτ

∫ β

0
dτ ′ K(τ − τ ′)(q(τ ) − q(τ ′))2 = β2

∞∑
n=−∞

|q̃n|2(K̃(0) − K̃(νn)).

(50)

As (50) is quadratic inq (but nonlocal in imaginary time), the partition function may be
calculated without difficulty. We find that the form (24) is changed into

ZSol = e−M ′
Solc

2β

√
M ′

Sol

2πβ

ω2

ω1

sinh(πω1β/2)

sinh(πω2β/2)
(51)

where

ω2 = ω1

√
1 + 36J0

M ′
Solω

2
1π

4
.

Figure 3 shows that the approximation (48) leads to results which are in fairly good
agreement with the exact numerical results for the partition function for different coupling
strengthsC = 36J0/M

′
Solω

2
1π

4. The approximation gets less appropriate as the temperature
is lowered. This is because (48) does not describe correctly the low-frequency behaviour
of the spectral density.

Figure 3. The partition function (51) for different coupling strengthsC = 36J0/M
′
Solω

2
1π

4 in
comparison with exact numerical results.
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The correlation functions are modified similarly. The only place where the imaginary
time τ appears inC(1)

q (z, τ ) is in the functionσ(τ) given in (33). This quantity now takes
the form

σ̃ (τ ) = 2βM ′
Sol ᾱD

( |τ |
β

− τ 2

β2

)
+ 2αD

ω2M
′
Sol

(
coth

(
ω1β

2

)
− cosh(ω3[β/2 − |τ |])

sinh(ω3β/2)

)
(52)

whereω3 = πω2, andαD = 1 − ω2
1/ω

2
2 and ᾱD = ω2

1/ω
2
2 are the damping parameters.

From (36) we see how to perform the analytical continuation of an exponential function
containing terms∝ τ and ∝ τ 2. Therefore, we expand exp(−σ̃ (τ )k2/4) with (52) into a
sum of exponentials and perform the analytical continuation for each term separately. The
result is

exp

(
− σ̃ (τ )k2

4

)
→

√
2πβM ′

Sol

ᾱDk2
exp

(
− αDk2

2ω3M
′
Sol

coth

(
ω3β

2

))
×

∞∑
l=−∞

I|l|

(
αDk2

4ω3M
′
Sol sinh(ω3β/2)

)
elω3β/2

× exp

(
− βM ′

Sol

2ᾱDk2

(
ω − lω3 − ᾱDk2

2M ′
Sol

)2 )
(53)

whereIl(z) is a modified Bessel function.
The interpretation of this result is as follows. The expression (53) contains a major

peak atl = 0 which by far dominates over all the other peaks. The distance between
neighbouring peaks isω3 = πω1/

√
ᾱD, which is increasing with increasing dissipation

strength. The additional peaks in the scattering function are signatures of the interaction of
the soliton with the phonon bath. Because of the interactions, a neutron may be scattered
by the soliton thereby emitting or absorbing a phonon simultaneously. Similar peaks have
been predicted in an isotropic Heisenberg system by Fivez and De Raedt [20] using the
Mori formalism.

The change of the central peak indicates that the soliton mass is increased according
to Meff = M ′

Sol/(1 − αD). The low-frequency part of the spectral density influences the
dynamics of the soliton at long times. On the other hand, the high-frequency part gives rise
to mass renormalization. The change of the mass is given by [19]

1Mhf = 2

π

∫ ∞

0

dω

ω3
Jhf (ω) = M ′

SolαD

2(1 − αD)
. (54)

A realistic estimate [4, 21] of the relevant components of the magnetoelastic tensorDzz
mn

givesαD ≈ 0.06. Hence the phonon damping is very weak. The change of the transversal
spin-correlation function for this value ofαD is shown in figure 4.

6. Concluding remarks

In this paper, we have suggested a mechanism for the coupling of a solitary solution of
the sine–Gordon equation to an environment of phonons. Upon employing the method
of collective coordinates, we have mapped the original problem onto that of a free particle
moving under the influence of friction. The related spectral density of the coupling has been
calculated. It shows a pronounced maximum at a resonance frequency which corresponds
to phonons with a wavelength comparable to the spatial extent of the soliton.

Taking into account the resulting form of the spectral density, we have calculated the
longitudinal and transversal spin-correlation functions. We have found that the coupling to
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Figure 4. The transversal spin-correlation functionS̃(ω, k) at k = −0.9ω0/c with the realistic
strengthαD = 0.06. Only the lower part of the major peak at aroundω = 0 appears.

lattice vibrations gives rise to additional peaks in the structure factor for neutron scattering.
The separation of these peaks depends essentially on the resonance frequency, but increases
with increasing damping. The relative intensity of such peaks crucially depends on the
damping strength. A possible material for which to study spin relaxation in quasi-one-
dimensional systems by neutron scattering is CsNiF3. As the material is insulating, the
dominant dissipative effects are due to the coupling to lattice vibrations, and the theoretical
study presented here should apply.
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